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the respective procedure is to be applied. For either of 
the triples, one kind of quadruple corresponding to 
b-'d b-'d and one kind of quadruple corresponding to 
b 'd  b'-d result, each leading to one only P/MDO 
polytype with m = 2 and m = 4, respectively. 

It is remarkable that only three of the four MDO 
polytypes are amongst the frequently occurring poly- 
types listed in Table 2, but also two of the four only 
P/MDO polytypes (namely those with m = 2). 

Concluding remarks 

Although classification of polytypes of any family as 
MDO, only P/MDO or not P/MDO and deduction of 
all MDO polytypes and all only P/MDO polytypes is 
not too difficult, the explanation of the corresponding 
procedures may seem fairly involved. The reason is that 
by far the most OD crystals contain layers of not more 
than two different kinds, and for such families there is 
obviously only one kind of packet. Furthermore, by far 
the most OD crystals with M > 1 belong to category 
IV or category I - and treated as category III - there is 
thus only one position of d I relative to b 1 and for 
category IV also only one position of d M relative to/¢u, 
namely those leading together with b 1 or/¢u to A ~ and 
A M , respectively. 

Although, as exemplified in Table 2, MDO and only 
P/MDO polytypes are not the only polytypes occurring 
in nature, they certainly seem to occur more frequently 
than others. In a number of polytype families they are 
indeed the only polytypes so far observed. Their 
knowledge may help for identifying the polytypes 
present (or mainly present) in a sample consisting of a 

multitude of crystals too small for single-crystal work, 
from powder diffraction diagrams. In this way they 
have already been used for the identification of 
vermiculite polytypes (Weiss & I3urovi6, 1980; Weiss, 
1976). 
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Abstract 

A phenomenological Landau theory yields new ex- 
citations in incommensurate structures corresponding 
to a phase and amplitude fluctuation of the modulating 
function. The dynamic structure factors for the new 
excitation modes are calculated in harmonic approxi- 
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mation and the influence of phase and amplitude 
fluctuations is discussed. 

1. Introduction 

In recent years structures with a static periodical 
displacement of the atoms from their perfect lattice 
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positions have been studied with rising interest. Since 
the wave vector q0 of the modulation cannot be 
represented by a simple rational fraction of a 
reciprocal-lattice vector, these structures are called 
incommensurate structures (for a review see Axe, 
1976). 

Overhauser (1971) proposed new excitations for 
these structures, so-called phasons, corresponding to a 
phase fluctuation of the static modulation wave. Owing 
to the incommensurability a uniform phase shift of the 
modulation wave is possible without any energy 
consumption, and therefore it is expected that the 
frequency of this new vibrational branch approaches 
zero at the site of the satellites. Quite recently, new 
excitations have been found in biphenyl (Cailleau, 
Moussa, Zeyen & Bouillot, 1980) and were explained 
by the authors by phasons, since they observed a linear 
dispersion relation originating from the satellite 
reflections. 

A simple explanation for the new excitations within 
an incommensurate structure may be given with a 
phenomenological Landau theory (McMillan, 1975, 
1976; Axe, 1976; Cowley & Bruce, 1978). An- 
harmonic terms in the free energy mix normal modes 
whose wave vectors differ by +2q 0, giving rise to 
new normal modes. They correspond to a fluctuation of 
the phase and amplitude of the static modulation wave: 

U ! = A sin ( q o r / +  O0). 

(rt is the position vector of the unit cell in a primitive 
Bravais lattice). The fluctuations fi~Pz and fiA~ of phase 
and amplitude cause further atomic displacements: 

~H 1 : ~A l Sin (qor/+ Oo) + A~cP t cos (qor/+ 0o). (1) 

Another A n s a t z  for the atomic displacements originat- 
ing from the static modulation wave and the phase 
fluctuations was introduced by Overhauser (1971): 

u t = A sin (q0r/+ ~0 + ¢ ~ 1 ) "  (2) 

The displacements of the phase fluctuations in (1) and 
(2) coincide only for small fluctuations ~P~ <~ 1. The 
phenomenological Landau theory yields displacements 
corresponding only approximately to phase fluc- 
tuations of the static modulation wave. There are also 
consequences for the scattering effects. Whereas (2) 
leads to a rather simple Q-independent Debye-Waller 
factor for satellite reflections (Overhauser, 1971), the 
atomic displacements of (1) yield a Debye-Waller 
factor which is a complicated function of the scattering 
vector Q and the fluctuations ~A t and rio I (Axe, 1980). 

The purpose of this study is to show the influence of 
phase and amplitude fluctuations of the static dis- 
placement wave and the influence of 'normal' phonons 
on static and dynamic structure factors. It is antici- 
pated that the fluctuations can be expanded into normal 
modes being all statistically independent from one 
another. The Ansa t z  for the atomic displacements is 

taken from the result of the phenomenological Landau 
theory [equation (1)]. We limit the calculation of the 
scattered intensities to the elastic structure factor and 
one-phonon processes. Multi-phonon processes are 
neglected. 

2. Structure factors 

In order to calculate the structure factors we first 
consider the scattered amplitude F(Q), i.e. the Fourier 
transform of the electron density function. The equilib- 
rium position r~t of the atom x in the unit cell l is 
defined by the position vector r t of the unit cell and the 
vector r~, where r~ -- r t + r e. The total displacement u~ 
from this equilibrium position consists of the fluc- 
tuation fiU~l caused by normal phonons, the 
modulation wave 

A~ sin (q0ret + tP~0), 

the fluctuation in phase 

ficPel A e cos (q0r~t + tP~0), 

and amplitude 

~Aet sin (q0r~l + cP0 ) 

of the static modulation wave. 
The instantaneous position of the atom x within the 

unit cell ! is therefore given by 

rel + U M : r e + r ! + t~Uet + A~ sin get 

+ dOel A~ c o s  0el + ~Aet sin 0el, (3) 

where 0et = q0re/+ ¢}e0. 
Introducing a Fourier expansion for the fluctuations 

we get 

~U~l = ~ Uq~ sin (qr~l + Xq~) 
q 

~tPet = ~ cPqe sin (qret + tpq~) 
q 

t~Ael = ~ aqe sin (qrel + ~qe)" (4) 
q 

Uq~ is the amplitude of a normal phonon, cPqe and aqe 
are the amplitudes of a phfise modulation ('phason') 
and an amplitude modulation phonon ('amplitudon') 
respectively. For the following calculation it is antici- 
pated that these modes are statistically independent. 

The Fourier transform of the electron density 
function is 

F(Q) = ~ ~ f~ exp [iQ(re/+ u~t ), (5) 
! e 

wherefe = form factor of the xth atom. 
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In the following we consider the exponential term for 
the various contributions in (3). 

Next we study the influence of the phase fluctuations of 
the modulation wave. With the help of the Jakobi- 
Anger function we obtain 

2.1. Elast& structure factor 
To calculate F(Q) at Q = G - mq 0 (m = 0, + 1, +2, 

• . . ,  { G } = the total set of reciprocal-lattice vectors) we 
first transform the term exp[iQA~ sin (q0r~t + ~0)]  
with the help of the Jakobi-Anger generating function 
for Bessel functions: 

+ o o  

exp (iz sin ~p) = ~ exp (im~p) Jm(Z). 
m = - o o  

Accordingly, we get 

exp [iQA~ sin (q0r~/+ ~o) ]  : ~ exp [im(qo r~/+ q~0)] 
m 

× Jm(QA~). (6) 

For the moment we neglect all fluctuations and after 
summing over l we obtain from (5) and (6) the 
structure factor for the main and satellite reflections at 
Q = G - mq0: 

Fro(Q) = 6(Q + m q 0 -  G) 

× Y f~ exp [i(Gr~ + m~o)]Jm(QA~). 
tc 

In order to determine the influence of the fluctuations 
on the elastic structure factor we consider first the 
phonon term 

exp (iQ0"U~t)= exp{iQ[~q Uq~ sin(qr~t + Xq,,)]}. 

Using again the Jakobi-Anger function we may write 

exp(iQ~U,~) = ~  {~ J,,(QUq,,)exp[in(qr~t+ xq~)]}- 

(7) 

Since we are interested in the scattering at the sites G - 
mq0 we may only use Bessel functions of zero order in 
(7), because in that case the term exp [in (qr~t + Zq~)] 
= 1. For infinitesimal displacements Uq~ the function 
Jo(z) may be developed logarithmically and we obtain 

In Jo(z) ~_ In ( 1 - ¼z 2) _~ -¼z 2. 

In this way (7) transforms to the well-known Debye- 
Waller factor for the atom x: 

I]  J0(QUq~) = exp (-W~) (8) 
q 

with 

exp(iQA~ 6q~lcos O~t)=~ { ~ exp[in(qr~t + ~Pq~)] 

x J,(q~q~ QA~ cos 0~t) / . (9) 

In this case the Fourier expansion of 6q~t was used 
according to (4). As for the phonons, we consider again 
only Bessel functions of zero order for the elastic 
structure factor. After a logarithmic expansion in 
analogy to (8), (9) can be transformed into 

ex l 0.l / 
= e x p ( - W ~ ) e x p ( - W ~ c o s  20~t), (10) 

with 

W ~ =  I(QA~)2Z q~qz. 
q 

From (10) we see that the phase fluctuations cause a 
spatially modulated contribution with a wave vector 
2q0. As already thoroughly discussed by Axe (1980) 
this leads to a superposition of Bessel functions 
Jm(QA~) and Jm+2(QA~) within the elastic structure 
factor. 

The influence of the amplitude fluctuations of the 
modulation wave is given by the term 

exp(iQ~A~tsin O~l) = ~ { ~ exp [in(qr~t + ~tq~)] 

× J,(Qaq~ sin 0~t) } . (11) 

In analogy to the phase fluctuations (11) becomes 

exp ( -W~)  exp (W~ cos 20~t), (12) 

with 

Wa = ~ Z (Qaq~) 2. 
q 

Owing to the similar spatial modulation we combine the 
phase and amplitude fluctuations and after multi- 
plication of (10) and (12) we find 

exp ( - w  +) exp (-w~ cos 20~1), (13) 

where 

w~ + = W ~ +  W~ and w ~ = W ~ - W ~ .  

By use of the modified Bessel function 

Im(z ) : i-m Jm(iZ), 
(13) may be expanded to 

W~ = ¼ Z (QUq~) 2. 
q 

exp(-w+) Z ( -1 )  s Is(w-~)exp(2isO,a). 
$ 
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Combining this result with (6) and (8) we obtain 

exp [iQ(r~l + u~/)] = exp (-W~) 

× exp (--w +) B(O,,t) C(O~l), (14) 
with 

B(O,,t) = Y. exp (imO,,t) Jm(QA~) 
m 

and 

C(~t  ) = ~ (--1) s Is(W~) exp (2isO,,l). 
$ 

If we rearrange the sums B(O,,t) and C(O,,t) and perform 
the total Fourier transform the elastic structure factor 
considering all fluctuations is at Q = G - mq 0 

Fro(Q) = 6(Q + m q o -  G) Z f~ exp (-W~) Tm(QA ~) 
t£ 

× exp[i(Gr~ + mq~,,0)]. (15) 

Compared to the non-modulated structure we have an 
additional 'temperature factor' 

Tm(QA~) = ex p (--w +) Y (-l)~Is(W-~)Jm_2s(QA,,) 
$ 

describing the influence of the modulation wave as well 
as the phase and amplitude fluctuations. 

2.2. Dynamic structure factor 
In the following we calculate the intensity of the 

diffuse scattering caused by the fluctuations (4). 
Phonons. For the structure factor of a given phonon 

with the wave vector q, we use the corresponding 
first-order Bessel function from (7) 

1 JI(QUq~) ~ :(QUq~), 

and taking into account the fluctuations of all other 
phonons we obtain for (7): 

½(QUq~) exp [i(qr~t + Xq~)] exp (-W~). 

In the Fourier transform of (5) we must consider the 
additional phase term (qr~t + ,~q~) and with (15) the 
one-phonon structure factor at the site of Q = G - mq 0 
-- q is found to be 

F~(Q) = 6(Q + q + m q o -  G) 

× Y f,, exp(--w~)rUm(QA~) 

1(.:./ 
x - exp [i(Gr,~ + m ~ o  + Zq~)]. (16) 

2 \ A , , ]  

OaK and ,,]~ are the components of Uq~ and A~ along the 
scattering vector Q, and using (15) the function T~ is 
given by 

TVm = (QA~) T m. 

Phasons. Similar to the phonons we examine in (9) a 
phase modulation phonon with a wave vector q. Again 
we use the first-order Bessel function for the given 
phason and the phase fluctuation caused by all other 
phasons is taken into account by the Debye-Waller 
factor given in (10). Then the appropriate term for the 
one-phason process is 

J~(q~q~ QA~ cos 0~t) exp [-W~(1 + cos 20~)] 

× exp[i(qr~t + ~%~)]. (17) 

Compared to the phonons also the argument of the 
Bessel function has a spatial modulation. For small 
q~q~, (17) is transformed into 

where 

D(O,a) e x p ( - W ~ )  e x p ( - W  ~ cos 20,,t), 

D(O~l ) = ½qgq~ exp [i(qr~t + q~q~)] (QAJ2)  

x [exp(iO,,t) + exp(-iO~t)]. (18) 

In comparison to (10) we obtain an additional factor 
D(O~t ), that is to say, in order to calculate the phason 
structure factor, the right-hand side of (14) must simply 
be multiplied by D(0~t). 

Accordingly, we obtain 

exp [iQ(r~t + u~t)] = exp (-W~) exp ( - w  +) B(O~t) 

× C(O,, t) D(O,,t). 

The sums B(a,,t), C(a,,t), and D(0~t) are rearranged 
relative to a uniform phase 0~t. By summing over I we 
obtain the phason structure factor 

F m O ( Q ) = 6 ( Q + q + m q  o - G )  

x ~ f~ exp (--W~) Tm*(QA ~) ~q~/2 

x exp[i(Gr~ + mq~0 + ~0q~)], (19) 

with 

Tm*(QA~) = ½(QA~) exp ( - w  +) 

x ~. ( -1)  s Is(w-~){Jm_2s_,(QA,,) 
S 

+ Jm_zs+,(QA,,)}. 

Owing to the relation 

Jm_l(z) + Jm+l(Z):(2m/Z)Jm(z), 

T~ can be transformed to 

T~(QA~) = exp (--w +) 

x ~ (--1) s Is(W-~)(m _ 2S)Jm_zs(QA,,) 
S 

It is interesting to compare Fm*(Q) with the elastic 
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structure factor for the case w~- = 0 = W~* - W~. Then 
we find 

T ~ = m T  m. (20) 

In this case of equal amplitude and phase fluctuations, 
phasons cannot be observed at main reflections. 

Amplitudons. To derive the structure factor for an 
amplitude modulation phonon an analogous way as in 
the foregoing section must be chosen. 

For a given amplitude phonon with the wave vector 
q, (11) becomes 

with 

exp (iQA~t sin 0~l ) = E(O~t ) exp (--W]) 

x exp (Wa~ cos 20~t ), 

E(O~t) = ½Qa,,, exp [i(qr~t + ~q~)] 

i 
× - [exp (--iO~l) -- exp (i0~t)], 

2 

and the structure factor for amplitude modes is 

F,~(Q)-- 6(Q + q + m q 0 -  G) 

x Z f~ exp (-W~) T~(QA~) ½(~q~/,4~) 
t¢ 

x exp [i(Gr~ + rnq~0 + ~,q~)], 

with 

i 
T~(QA~) = ~ (QA,,) exp ( - w  2) Z ( -1)  s Is(W~) 

S 

X {dm_2s+l(QA,¢)-Jm_2s_l(QA,~)l. 

(21) 

6q~ is the component of aq,¢ along Q. Contrary to the 
phasons, amplitudons are observable also for w~ = 0 at 
main reflections. 

Scattering law. So far we have calculated the elastic 
structure factor F(Q) and the scattered amplitudes for 
the various modes [equations (16), (19), and (21)], 
disregarding the time dependence of the modes in (4). 
This is possible for X-ray scattering owing to the 
energy integration of the scattered radiation. 

But it is not possible for neutron scattering, where we 
must analyse the coherent elastic cross section 

d 2 O" k' 

d.Q dco 2nk 
- -  S(Q, o9), 

where k and k' are the initial and final wave vectors. 
The scattering law S(Q,~o) is defined by the Fourier 
transform of the correlation function G(r,t) in space 
and time. As we have already performed the Fourier 
transform in space in the foregoing sections we obtain 
for 

S(Q, co) = .[ dt exp ( - i ~ t )  ( F ( - Q , 0 )  F(Q,t))r .  (22) 

The time dependence of the structure factor is easily 
introduced by substituting for all phases in (4) 

Xq~ - '  Xq,~ + COot 
' t  ~ q t c  "-~ q q t ¢  -t- O.)q 
tt V/q~ --' gtq~ + coq t. 

Equation (19) is for instance transformed to 

Vm*(Q,t) = rm*(Q) exp (?w~ t). 

The only time dependence results from the phase mode 
q, since (19) contains no phases of other fluctuation 
modes. Accordingly, the scattering law for this example 
is 

S(Q, ~o)= FmO*(Q ) FmO(Q ) 6((.o- m,~). 

Consequently the results in (16), (19), and (21) may 
also be used for interpretation of neutron experiments. 

3. Discussion 

The elastic and dynamic structure factors given in (15), 
(16), (19), and (21) have been calculated within the 
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Fig. 1. Scattered intensity of main reflections and phasons, ampli- 
tudons and phonons around the main reflections (m = 0). The 
intensities are proportional to (To) 2 - - ,  (To*) 2 . . . . .  , (Tg) 2 
. . . . .  and (TU) 2 . . . . . . .  [see equations (15), (16), (19) and 
(21)]. For better presentation different scale factors were chosen 
for the various functions. (a) (q~2), 2 (arel) = 0. Scale factors are 1 
for (To) 2 and 8 for (Tg) 2 and (Tot') 2. (b) (q~2) 0.25, 2 = (are~) = 0; 
the same result is obtained for (q~2) 0, 2 = (arel) = 0.25. Scale 
factors are 1 for (To) 2, (Tg) 2 and (T~') 2, and 0.3 for (To*) 2. 
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r ange  0 < ( Q A )  < 10. Es t ima t ions  o f  the  phase  
f luc tua t ions  

q 

ind ica te  that ,  by  a s s u m i n g  the  m e a n - s q u a r e  a tomic  
d i s p l a c e m e n t s  caused  by p h o n o n s  to be c o m p a r a b l e  to  
acous t ic  p h o n o n  m o d e s ,  (q~z)  m a y  reach  values 
be tween  0 . 0 0 4  and  1 (Axe,  1980). 
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Fig. 2. The same functions as in Fig. 1 for m = 1 (first-order satellite 

reflections). (a) (¢2),  (a .) = 0. The scale factors are 0.5 for 
re1 U 2 (Tl) 2, and 8 for (T~) 2 and (T l ) .  The insert shows the scattered 

intensities for small values (QA). All scale factors in the insert 
are 1. For the given values of (¢2)  and z (aret), T~ = T~ [equa- 
tion (20)]. (b) (¢z )  0.25, z = (arel) = 0. Scale factors are 0.5 for 
(T~) ~ and (T~*) ~, and 2 for (T~) 2 and (T~;) ~. (c) (¢z )  = 0, 

z (are1) = 0-25. Scale factors are 0-5 for (Tl) ~ (T~) ~, and 1 for 
(T~) ~ and (T~') 2. 

The  p h e n o m e n o l o g i c a l  L a n d a u  theo ry  expla ins  the  
i n c o m m e n s u r a t e  s t ruc ture  by the  f reezing o f  a soft  
m o d e .  In tha t  case  ampl i tude  and  phase  f luc tua t ions  
shou ld  be o f  a p p r o x i m a t e l y  the  s a m e  m a g n i t u d e  shor t ly  
be low the  p h a s e  t ransi t ion.  F o r  this r e a son  we  h a v e  
also e x a m i n e d  the  effect  o f  ampl i tude  f luc tua t ions  

(ar2,) = ½ Z (aq/ ,4)  2. 
q 

Using  this express ion ,  the  D e b y e - W a l l e r  fac tors  

W * =  ¼(QA) 2 (q~2) and  Wa¼(QA)  2 ( a  2 rel) 

may be directly compared. 
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Fig. 3. The same functions as in Fig. 2 for m = 2 (second-order 
reflections). (a) (¢2),  2 (a~l) = 0. The scale factors are 1 for (T2) 2 
and (T2~ 2, and 8 for (T~) 2 and (T2V?. In the insert all scale 
factors are 1, (b) (¢z )  0.25, z = (are~) = 0. The scale factors are 
0-5 for (7'2) 2 and (Tz*) 2, and 3 for (T~) z and (T2t) z. (c) (¢z )  = 
0, 2 (arel) = 0.25. The same scale factors as in (b) are used. 
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The numerical calculation accuracy is better than 
1%, entailing sometimes summations of Bessel func- 
tions up to 16th order. The given squared functions 
(Tin) 2 (T~V) 2, (Tm~) 2, and (Ta) 2 contain no phonon 
Debye-Waller factor, i.e. the actual structure factors 
may be considerably attenuated for high (QA), 
depending on the factor exp ( -  W~). 

In Fig. 1 (a) the results for m = 0 (main reflections) 
are summarized. For ( 0  2) and (ar2el) = 0 (these ought 
to be taken as limiting cases for negligible phase and 
amplitude fluctuations, respectively) phasons cannot be 
observed. Yet, surprisingly enough, amplitudons may 
be well observed at the sites of weak main reflections. 
Anticipating comparable amplitudes aq and Uq, i.e. 
comparable mode frequencies, the amplitudons ought 
to be as well observable as phonons. 

The results for (~2)  __ 0.25 and (ar2el) = 0 as well as 
2 (arel) = 0.25 and (~2 )  = 0, respectively, are shown in 

Fig. l(b). Both cases yield the same results. The 
considerable attenuation of the functions T 0, T~, and 
Tg above (QA) ~_ 2.4 are quite characteristic. 
Furthermore, phasons become observable, but only for 
(QA) ~> 2. Nevertheless, this result seems quite 
important for experiments, since it provides the 
possibility of estimating the magnitude of the phase and 
amplitude fluctuations by observation of the phasons 
near main reflections. 

For first-order satellites and small (QA), the 
functions T 1, T~, and T~ are almost identical (see 
insert in Fig. 2a). Whereas the functions TI and T~ 
become identical for (~2)  and (ar21) = 0 (see Fig. 2a), 
the antiphase behaviour of the satellite intensity relative 
to the amplitudons may be observed for all calculated 
fluctuations as well as for m = 0. At the maximum 
intensity of a first-order satellite no amplitudons may 
be observed (Figs. 2b,¢). It is interesting to see that the 
fluctuations (~2 )  and 2 (arel) have quite a different 
effect on the function T~. For phase fluctuations the 
node at (QA) ~_ 3.8 is displaced (Fig. 2b). The anti- 
phase behaviour of the functions T 2 and ~ observed 
for m -- 2 is similar to the cases m = 0 and m = 1. 

For small (QA) we can write 

(7"2*) z ~_ (T~) 2 ,~ 4(T2) 2, 

i.e. phasons and amplitudons increase relative to the 
satellite intensity. As for m = 1, phase and amplitude 
fluctuations affect the function T~ quite differently (see 
Figs. 3b and c). 

4. Concluslon 

In this report the phason and amplitudon structure 
factors have been derived and the influence of phase 
and amplitude fluctuations on the elastic as well as 
dynamic structure factor have been investigated. The 
main results are: 

(i) Phasons are well observable near intense satellite 
reflections. 

(ii) Owing to the influence of amplitude and phase 
fluctuations it is also possible to observe phasons near 
main reflections. 

(iii) Amplitudons may be observed near main and 
satellite reflections. Apart from very small (QA) 
values, amplitudons are well observable when the main 
and satellite reflections are weak. 
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